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. .BSTRACT

A general system for thie detection of amplitude-modulated
noise, in the presence of background ncise, is analyzed with a
view toward determining the behavior ana optimum design of the
system. The unmodulated nolse ~a.rzer and the background noise
arc assumed to te independeut ¢<a - lovnary Gaussian random time
fur.-tions. The modulating functio: 1is a4 time function which,
in gen21:21, iz random, non-Gaussizr, and nonstétionary. A
detecticn criterlion, as a msasui. .. the performance of the sys-
sem, *> defined, zrd computed in terms of the input power spectra
and the transfer characteristics of the system. The techniques
used, and the intermediate mathematical results cbtained, are of
interest in themselves. The results are applied to give a
detailed analysis of a typical A3tcction systsm which 1s a
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specizl case of the general syt
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l. INTRODUCTION

The problem of the detection of signals having the character
of amplitude modulated random noise is of recent interest in
communications theory. For example, a paper by Deut..ch1 treats
the effect of a linear detector on such signals when the modula-
tion is pericdic.

In this report, we treat a genseral detection system involv-
ing square-iaw detectors. We shall compute various statistics of
the output, with and without modulation, and, from these, compute
a detection criterion which we define as a msasure of the detecta-
bility of the modulated ncise.

The system is diagramed 1n Fig. 1. The input filters Hl and
H~ ineclude the characteristics of any receiving equipment which
might ordinarily precede them. 7The conly assumptions made on the
filters Kl and K2 are that they do not pass dc. The output inte-
grator is perfect with integration time T.

We take the input u(t) to be a stationary Gaussian noise y{%t)
modulated with index m by a signal function g(t), statistically
independent of y(t). Thus

u(t) =y(t) [_1 t)__, (1.1)

We assume both the noise and the signal to have zero mean level;
*
that is ,

Gy =0, (etdy,, =0. (1.2)

Then, the total input power; Pu, is
-2 ead 25 - s

P, =uP 8y, =P, (1+m2Py) (1.3)

where
a8
/ 2 -
Pn—(y (t)> —Jo Gy (W) dw (1.4)

= (.24 -(®
R (e (t)>TAv.-Jfo G, (@) do

* This notatlion 1s defined ir the Appendix in which we summarize
the main notations and notlons on random time functions that we

use.
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Thus mng ls the ratio of the sideband power to the carrier power.

We shall assume
2 "

mTP, << 1, (1.5)
since this is the interesting case in a detection problem. The
methods used; however, are appiicablie for any value of the ratio.

If by detection 1s meant the extraction of information about
viie modulating function (which would also seem to be the best
means for distinguishing this type of zignal from unmodulated
noise), then, the inherent presence of fluctuation noise at the
output of the detector, due to demcdulation of the input noise
carrier, makes thics a problem of the detection of signals in the
presence of additive noise.

In order to see this more clearly, and to better understand
the action of the genersl system of Fig. 1, we shzll compute ths
output power spectrum of a square-law detector wshen the input is
unmodulated noise. This calculation alsv gives a simpie illustra-
tion of the methods used in treating the general system.
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2. POWER SPECTRUM AFTER A SQUARE-LAW DETECTOR

If the input of a square-law detector is given by {(1.1),
then, ths outpuu 7(t} of the squarer is given by

v(t) = ul(t) = yo(t) ‘[1+2mg(t) + m2g2(‘c)] . (2.1)

In order to compute the power spectrum G
first compute the autocorrelation RV(‘r ) ard - V(
by means of the Wiener-Khintchine theorem (Eq. (A5) in the Appendix).

R (%) = (v(*) V(E+T) ) g, (2.2)

:<y2(t) y2(t+'r, ,‘> {l+m2 L<g2(t)\) .

+ <32(t+1: )> rav T 4 <g(t) g(t+”5>> TAV]

4 2 2
+ ot () Pt ) g, } :

The terms in (2.2) which involve m and m3 vanish, since we
assume that all time-ensemble averages of odd powers of g(t) vanish.
To compute the foregcing fourth order ensemble average of y{tJ,
we use the formula (A7) given in the Appendix, which expresses the
hilgher order moments of a Gaussian random time functior in terms of
its autocorrelation funciion Ry\ Y.
We have

(P PErn)=GFw) (FPave )+2{{yit) vt +¥ ))k (2.3)

— 2( A 3 2 \
bl \O + 2 .
Ry J Hy ()
As regards the fourth order time-ensemble average cf g(t), we

make the assumption {which is fulfilled by a large numper of random
time functions) that

/ 2 2, 2
(e°(t) g ++«¢)> Tav= B, (0) % £(T) (2.4)
wnere £(v¥ ) is of the order no greater than that of R . (0).

T ]

i € bt ) bl b

e e i 8 e 58 - HAAE Y SIS SN

v




0 AR P R N M P DO ISRt Skt

- 7 -

For example, if g(t) has Gaussiazn statistics, then

Y ) = 2382 ('V)S?Rg‘ (0). (2.5)
Consequently, we obtain from (2.2) that
N\ v 2 2 K {-‘ 2 \72 1
R (¥)={RF (0) + 2 RE (23} {[i+n® &, (03] (2.6)
2

R (v)+mt £(v)}

+4nm
4

In view of assumption (1.5), and the foregoing remarks about
f(v ), we may henceforth ignore the term in (2.6) involving m?.

The power spectrum Gv(c-.)) is now easily obtained by taking
the Fourier integral of (2.6). The resulting terms group themsslves
naturally into three groups; by (1.4, we write Pr.\ and Pg for RY(O) '
and R_(0) respectively.

The power spectrum Gv(w) is the sum of dc terms: (2.7
28(w) P2 'f’i-map] e
- on --0- g ’

2

steady state or signal terms: 4 n* Pn2 Gg(w) 3

2 2 j
noise or fluctuation termss [l+m Pg] dp Gy(;p) Gy( (ARFTS

+ 2 m° fd'v Gg(v ) jd,u Gy()ﬁ) G-y(,»‘-““""""’ ).

The integrated power is then, dropping terms involving m2 P_ by

g
assumption (1.5),
2 , A
de P (2.8)
2 2 .
signal 4 m Pn Pg
2
nolse 2 Pn 3
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Thus, as stated at the end of Sec. 1, at the ocutput of the
square-law detector the pfoblem reduces to that of detecting a
signal of total power 4 m° Pn Pg in the presence of an additive
noise of total power 2 Pn‘?-a

This problem is usually attacked by analyzing the detector
output with a band-pass or low-pass filter follcwed by squaring
and averaging to determine the mean square signal and noise.

It 1s easily seen that the complete detection systen,
dlagramed in Fig. 2, consisting of receiver, square-law detector,

filter, squarer, and finlte time integrator is a special case of
the system of Fig. 1, obtained by setting 4 = H1= Hp and K = K, = KZ‘

PR '{m}—

‘This case is treated in detail in Sec. 8.
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3. THE DETECTION CRITERION

Suppose that 1t is possible to measure the output w(T) of
the system of Fig. 1 when the input is unmodulated noise. A large
number of such measurements will have an average and a mean square
fluctuation given by the ensemble average <W(T)> n 8nd the variance
o2 =

“2(1)) G P (3.1)

Similarly, a large number of measurements of the output when

the input is amplitude modulated noise wili have mean vaiue (W(T)
and variance

o_.ng:\/w.?.(T)> mn <;(T)> fm ) (3.2)

The subscript n on a gquantity 1s to indicate that the quantity
ic to be evaiuated under thc assumption that the input to the system
is unmodulated noise, while the subscript mn will be used to indi-
cate that the quantity 1s to be evaulated under the assumption that
the input is amplitude modulated noise.

Under the assumption that the observations are independent,
the difference A(T) of the observed outputs in the two cases,

Alr) = w(T) . - w(T) , (3.3)
iill have mean value {T \ = {F(T) - <':,m\ and
w : < \ iy \ "/ mn "N/ n :
varlan ual +o q‘ ‘-y 5'20 Teing the statisztlczl theory of test-

by testing the hypothesis that (A(T)) = O one can detect the
presence or the absence of signal. To any preassigned probability p
one can find a number, K, such that

. 1/2
: i 2 2
AT € K [_a'mn +0, ] (3.4)

with probability p. 4s the detection process, one then adopts the
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following rule. One decides thet nolse alone is present if the
difference of the observed ocutputs lies in the range given by
Eq. (3.4), and that signal (in our case, modulated noise) is
present if the difference of the observed outputs lies outside
the range given by Eq. (3.4).

Motivateid by the foregoing considersutions, we therefore
adopt as our detection criterion, dencted by D(T), the fcllowing

ratics

{etm,, = (@),

= (3.5)
[r ?-7. e a_nz ‘}-‘-/z,

M

It is presumed that the larger D{T) 1s for a given detecztion sys-
tem, the better will be the systemis performance, and the more
likely it will be to detect the presence of signal.

In many cases; it can be assumed that the fluctuation term
for the case of signal and nolse in th2 input is roughly equal to
the fluctuation term G; for the case of noise alone in the input.

We then have for the detection criterion

DT = — . 5.
I v, (3.6)

In view of assumption (1.5),; one could show that <rmn is
oughly equal to a_, and we therefore use REq. (3.6) for the
etection criterion:

We now turn our attention to the problem of expressing D(T) in
terms of the statistics of the noise and of the modulating function.
This problem is solved in several stages, as follows.

T
a

In Sec. 4, we sxpress D{T) for lzrge T in terms of the cross-
correlation, P(7¥), of the outputs, vy
second filters, and the autocorrelation
of the multiplier. We also obtain a si

expression for D(T) for small T.

4

(=]
P
(

i) and v,{t), after the
5 Rw(’r), of the outpuv, w(t),
milar, but more complicated,

- o .
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In Sec. 5, the cross-correlation, (), is computed under
two different assumptions. First, it is computed under the
assumnption that the input of the system 1s unmodulated stationary
Gaussiain neise, in which case we denote it by Pnﬁ’t); Since
the stationary character of Gaussian noise i1s preserved after
passage through ncn-linear devices, it holds that

Pal®) = [<vl(t) Vot +2 00, | (3-7)

Seccnd, f>@t} is computed under the assumption that the input,
u(t),; is amplitude-modulated noise In this case, we denote it
by an(t ).
Thus,
- - S —— —— ,
:Omn(."c )...£<vl(t) vo(t + 1 )>TAV:) _—_— (3.8)

In Sec. 6, the autocorrelation, R (), is computed under
the assumption that the input 1is noise. We have therefore

R () = | {wlx) wit + % )>TM} (3.9)

|——-‘

=<w(t) wit + )

Finally, in Sec. 7/, the results of the preceding secticns are
combined to vield the required expression for D(T).

1#]

T venminm)

s o=
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4, LIMITING FORMS FOR THE DETECTION CRITERION

A Formula foz D2(T)

Since

re T
w(T) =‘ w(t)dt :[ v,.(t) v, (t)dt, (4.1)
JO (o]

it follows that

G n=j‘T (T H0Yy, 6t = 1p (0, (4.2)
) (o}

TR WU (L S -

gw(T))mn-g (700 T8y [ dt (4.3)
(o}

’ T (T

('v"?'ﬁr)> n”'{ at av' (wee) witH ), (4.4)
S0 JO
T (T T

'—'\ dt dt' Ry(t'-t) = 2[ dt’' R, () (T-7).

Jo Jo GO

Therefore,
-2 m\\ I— 2 - . T ~
<w ™ )n - (W(T))n = 2§ e R (¥) (T-2) (4.5)

i

L

2 T
. . 2
- [TFn )} 2‘(; dy [Ig'.(’l') -f’n (0)] (T-T)»

2. .
Corsequently we may write for D (1):

( T - - ~ '1Z
?:- ?1 (T) i} ﬂ__a":. Ke <v, (+) \f;lt:)):: = Pn (0) J | e
T 2 J(:r(l— ) [RuwG)-p,2(0)] da

.
e e e iAo N
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The Limit for T Large

If the noise, y(t), has a continuous power spectrum G,(u)
as we assume 0 be the case, then it will be shown in Sec. 6 ¢
the power spectrum G_ﬁ(w) of the output of the multiplier (when
the input is noice) will also be continuous except for a dc delta-
function term equal to 2 rn2(0)° We therefore define

I o 2’ -
G, (W) = G, (w) - 2"(’14. (0) & () 4.7)

%0 denote the continuous power spectrum of the output w(t) of the

R (€)= R (%) - P~ (0. (4.8)

R' (T )}, unlike R_(¥), has a finite integral from O toe® . By
the Wiener-Khintchine theorem, it follows that

| _2[\“!( ) Zﬁi?"__ 2/a01,
aw(D) —71’—-] R, (t) d= =—7,F‘/[A’“,('ﬁ Lo (01]41 (4.9)

Let us now pass to the limit, as T=> o2 , in {4.6). By defini-

tion, the first term of the numerator tends to Pmn(o)° From the
fact that R'w("c) is integrakle it follows that the denominator
tends to 4T G‘W(O).

We therefore ootain that

" n n 2
!l’m Z TZ(T) — [(J‘H‘?‘- (U\} - !,.)‘n (U}} (4 10)
= - o
L, T T Gy, (0)

T T R YT
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Thus for T large, we have approximately

- D {0
PM=F fin £0) I'"” . (4.11)
[ 21 G, (0)]*2

W
Thus the detectlon rztio Increases with the square root of the
integration time. In other words, in order to double the detecta-
bility of a weak signel in the presence of noise, it is necessary
to quadruple the integration time.

The Limit for T Small

For T small, the denominator of Eq. (4.6) is approximately
T [:RW(O) - F nz(O)-] s However, there 1s no simple expression
for the first term of the numerator, unless the signal 1is station-
ary, when the integration is no longer necessary. We therefore
can only obtain the formal expression

, \ Lm L (Trani), s -po)
i 2 DT = {T—»o T L<wﬂc(ﬂ>’““# ‘/,‘n(o)}4.12)

T—0 =
R (0) = p,* (0)

In Sec. 5, we will show how the first term in the numerator of Eq.
(4.12) may be evaluated 1f we possess a knowledge of the complete
statistics of g(t); that 1s, if we know the mean value function

Mo (£) = ) (4.12)

and the covariance function
PR N EXCICR IOV I (4.14)

It may be nocted that the assumptions we have already made on g(t) may
be written

Av

-

[ R '
1 = '- ( + - Y}
R‘& () U g L& JTAV (4.16)
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5. CROSS-CORRELATICN BEFORE THE MULTIPLIER

In this section, we compute @ () and 'I’mn(‘b’). We make

AAAAA

the convention that &ll integrals which are taken from - oo to
o are to be written without the limits of integration. Since

78 = g R0 ff et e, AL 0 w (ot R bl

“‘" k (’!\J dﬁ alﬂ,_ 4, (ﬁ)J\ ) u({:n-ﬁ;v, ufbrr-g9K5.2)

it follows that

(Y
7]

P _
1 {RLymI) (5.3)

ﬁm'y\('t) = J“ <E[tj(t)]><ﬁ[i+matf)]>“r,\v (5.4)

'
where for brevity we use the single primed integral sign g‘ to denote
the six fold integration,

| Jay I k(3 k,ly) if Udﬂh d, dg a8, I, () A,(a) 2, (8) 4, (BX5. 5)

and for a function f(t), we define the notation F; {f\t)1 by

FLS] = $le- D) §- D) £ vty £ l642-0m7) 52

In EQ. (5.4), we have used the formula

<.F;[3m] Fiir mq (t)]}ﬁv = (/F-[:i \’,t)]) {F,'[h-mg(t)]z_‘ (5.7)

1 Y

frow the statistical independence of y(i) and g(t), and

s} tn

y nature of y{t).

e

b Sk
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We nenceforth drop the subscript y in writing the autocorrela-
tion and powsr spectrum of y(t). ©Sinee y(t) is Gaussian, we may
express the four fold ensemble average <Fl [ y(t)])in terms of
the autocorrelation K(¥ ) of y(t) by means of Eq. (A7) given in
the Appendix. Wwe thus obtailn

(Rlywl) = R{d-4) R(B-4.) (5.8)
¢ R+ %Y= pi-n) R(t+dy+5-B-)
+ R (7+ A+ - (31_,]\1 R (T*‘*a.*}z"(gn"")\i :

Fy [l+ mg(t)] is easily expanded in powers of m, and we
obtain

vaq(€)] = i
F.[1+1h3( ] (5..9)

e
¥4

+mM { q (t~a-%) + gt -dy -3+ g(ttr-B) +3(t+r-(52_——7)}

A-s

e Jl-amy) gk -3) + glE-4-3) g (se-py)
+ G- 4-%) q(t4n-foy) + g le-dy-¥) gle+e-gi)

A j (")‘41"?3 % H‘*"t' .Bz"']) + 3('(:%:-{}‘-'1) ;!(Ht-ﬁzll)}

‘ e q(t-4-%) q(t- o ~F) qltse=pgi-n)

+ q (t-4,-%) 3 (- dy - %) g Cbie- A-7)
+ 9 {(t-a-7%) q (t+2- Bi—) 9 (t+%-3,-7)
+ 9 (t- da-¥) g (E4e- Bion) g (4= Bamn)

-8

o

i
T

4 . / ~ /2 ’
' { 9(t-4-%) q{t-4-%) q(&rv-pon) 3(““—_(&“"])}'
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o

Upon taking the tlme-ensewble average, we obtain
<F {1+mgu;>]>m= 1 o
+ o { Ry () + Ry (B8, + Ry (wr ¥ -p-)
+ Ry lrenstopod + By brenip e Rlrwari i)
e (%Hz-—a’;?\ 3({:-41-?) 3(1:4—-:—(3,-*\3 3(“""@5‘)\2:7»

The terms in m and m3 vanish, because it has been assumed that i
all time-ensemble averages of odd powers of g(t) vanish. In what
follows, we may 21so ignore the term in Eq. (5.10) involving m4,
since we assume that the fourth order time-enseuble average of g(t)
is of the order of B.ga(o). Consequently, the term in Eq. (5.8)

. involving m% 1s of the order of \Lmzﬁg(O)J 2, and this term may be
dropped in view of the discussion in Sec. 1. i

. In view of Egs. ¢(5.10), (5.8), (5.4), 2nd (5.3), we could now
write an expression for Pn("c) and for Pmn(t') in terms of the
modulating index, m, the autocorrelation functions, R(7 ) and

Rg(‘t'), and the filter impulse functions, h,(ot), hz(@), kl(§ )y
ka(vl ). However, it is more convenlient to express the cross-

correlation, P (¥ ), in terms of the power spectra, G(w) and
Gg(w), and the filter transfer functions, Hl(w), Hz(‘-’ s KLJ._(G ),

and Ka(w). To do this, Egs. (5.10) and (5.8) are substituted

in Eqs. (5.4) and (5.3). In the resulting expression, R{¢) and
Rg("c ) are replaced by the Fourler integrals which relate them to
3{«) and Gg(w ), given by Zg. (A6) of the Appendix. By inter-
changing these Fourier integrals with the integrals indicated in

Eq. (5.5), and performing the latter integrations, we obtain ths
following sxpressions for 'f’n('r) and /—’mn("c), where an asterisk,*,
plex conjugate. In deriving these formulas, W& havs

5 2 com
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made use of the facts that a spectral density is an even function
of its érgument, while any filter transfer function, say H, is
Hermitian; that is H(-w)=H * (w).

e (v =

. . ) (5.11)
K(0) K () (e, GLad MG [du, 6lu) IHy L]
42 (Taate, ¥ gL aw) Kiw) H7(2
Mo 10w K (wre) K7 (w+ws)
] P (D) = (5.12)

€(0) K, (0) { St 6o i T, Gl Tl
bt o 6 I [do Gg6) fdu, G0 I8 lomil”
v S G 1 v G fida Gl P |

22 L d day €591 Gl 6D Hulw) HEGS)
Hu(u‘o;_\ Hz*(w,_\) K,(ij,_) K; (w‘-o-t-.),,)

~»7T ..,

i,
- ° = HY

¢ 2wt iy 60) €T KDL
fa‘wl G(wt) ul* (wh Hi(w;*'y) fawl é(wz‘) H;(wl) Hz(wl-y)
e Sar Gl (Tdu din 6l) Gl0) 70
Gy +9) 1) Byl ~v) H ) K (o) K (1,44,

3 N
v §av 646) [fdu dwe G (0) 6l e“f“"n*:v \
M, (w) H* (i0-3) B,62) B* (0 49) Kolnwa) Ky (vis)

+ 20 $ay 6300 €™ [fdu don Gla) 6(22) o 0 ()

[ Wi . . N\ i . 1" ¥ S g 04 Al Aes » LY, & iad )
Hl (W. +’v i ﬁﬁ. (wl 'i"v-l 5’?‘ {Wg\j Ra {WZ\} {. ",'v'v" ey ;\; ,K—"’ '\/:'i ¢ ....._W\._
S VY s Ve W W
2wt Sdv 60 €% {4, du, Gw) 6(w) €™ ™"
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The reader should observe that all the foregoing integrals

are real valued quantities.

Later, we will assume that K,(0) = 0=K,(0). Therefore, ve
have writcien ihe foregeling exp;ess;ons for ’cn(".‘-) and (Dmn(’r/)
in such a way as to make evident the form they assume in this

case.
To conclude this section, we indicate how, with a knowledge

of the mean value function Eq. (4.13) and the covariance function
Eq. (4.14) of g(t), one is able to evaluate the quantity

Q; b _
T>0 T jo <"€7<t)\4(ﬂ>m dt (5.13)

required in Fg. (4.12). Using the methods of this section, it is
evident that Eg. (5.13) is equal to

v o~ T
_r <F|.\j(t)]> oo T <F,[i+'mg(*')]> . (5.14)
0

Using the expansion of Fq ['l+-mg(t)] given by Eq. (5.9), it is
' easily seen that, up to terms in m<,

XA‘M f CFMsmgd]> = 1 (5.15)

! oo
+ m{ Mg (- 4=-3) + g (- oy ‘=)+1L (v-B.- 1)+M.3\’t— q)}
+ mz{ Py (= o, =%,- %-%) + [‘31\«; A1, - B

+ lgq (- A- 5, "C-'(;,"?‘) + P} = oA - ?, T~ (3;"”])‘

L Fq, (=43, - B-q) + PB (- ,-%, - ;’52-*\\)
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It is clear that if g(t) 1s a zero meun stationary random
time function, then the right hand slde cof Eq. (5.15) is equel
to the right hand side of Egq. (5.10).
Using Eq. (5.15) and Eg. (5.8), one could write an express-
ion for Eq. (5.14) similar to that written for Eg. (5.4) in
Eq. (5.12). However, for the present, we leave thils computation
as 1t 1is.
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6. AUTOCCRRELATION AFTER TEE MULTIPLIER

In this section, we compute
s\ V

- R T I N,
K, ()= KV E) ) VilEry) v (8+1)/, (6.1)

the autocorrelation of the output of the multiplier when the input
is unmodulated stationary Gaussian necise. Using the same spproach

as in the previous section, we write

_f .<F}. Lyl (6.2)

AM

where for brevity we use the Gouble-primed integral sign‘) to denote
the twelve fold integration

J(j‘J(J( J_Z d‘;z. "j"““ &']2 ‘Q?.(i.) ‘En (;1) /R‘.(m) '&2 (7)2) (6.3)
IIIT iy do, day daty £y ) Al A () ()

£ an

S\gﬁg dﬂ. &@z 4, d{m /V\z ((4-) j\zwz) 'y\z(/&“) "‘1 !314\)

and we define the notation F, (y(t)] to mean
‘i\b oy~ \i\ - \5) ‘a(t*“& =’~3-\9\ L’H;"" oAy~ ?\(6.4)
4it -6 “ b 3 (ke g Coepyom)

3 AN
Now << [y(t)},?is an eight fold average of a Gaussian random
function. Consequently, by Eq. (A7) of the Appendix, i1t may be

~ e i

expressed as the sum of 105 terms, each term s product of four

-
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two fold averages. It is easy, although tedious, to enumerate
these terms. It is found that, if we assume that

Kl(O)‘: Q= K;_,(O), (6.5)

then 45 of these terms vanish when the integrations indicated by
Eq. (6.3) are performed. By the same method as used in the pre-
vious section, the remaining €0 terms can be expressed in terms
of the power spectra G{w ) and G_(W ), and the filter transfer
functions H,(w ), Hy(k), K;(w), and X,{w ). We finally obtain

the following expression for Rw("c‘ )o

e R, (v) =

[ ( re ) | \ 2 N s ,-’-‘: iié.g_‘;
Y1) dw, dwy al0)Glo) #lw) b7 (o) Mlw)) H0s) K borwn) K Gogria)]
+ 4 [T0T doy Aoy do, du, G060 G65) Glag) @F (9 ea*os™ ) b
\H‘lw‘)\zlHllwl)ll]H;{w;')lz]Hl(w.ﬂl" lK.(w,+w;)iz iKZ(wz+w,)}2‘ :
+H JPJ‘r f ] dio dus by dow G o) G 6y Gl 7 (i ey T Y
‘W\) H'L(W) H.\Oz) Hl(wz) H (”3 3 i \UJ Hz(“’#\ =
k (“’n‘*wzl Ko LW:W&) K& {0y + @) Ko (w5+ +Wy) .

-u—iCJ CEQ V dw, dw, dos dwy G{w) Glw.) G(Wa)év(u)q\ eu,(w +0);)
!H.WQ\ \“’2('02.)\2- H, (w;) 'r\;_ ) H, (W) ,41 (w,)

K (“H'“’) K'l U‘) ""J..\, Kn (w. -hu) Kz(wn_‘ wa‘)
Cr (W +in)
1—:1(_{3 J.“) d.W /;Wz cih’; (J.IJ“ 6("\ G(“))) u(w) G(‘“\q\) 2 L

H "“b) H" (L"'y H! 'z.) l'h<wz) H (wB) Hz “’3) H (*’") q (‘JM\

e
L :
(¢ -+
‘i"ié .3?33‘ dw, dw, dw, do, G\w,)”g(w &) ﬁ/u\b e'-'t'(w A hir N 4) _‘
o) i® THa (o) Hilws) B (05) HE 00 Wy (wd)
(2, us) !\;L%.WD K* (o4 00) KX {wa+Wa)
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7. COMPUTATICN OF THE DETECTION CRITERION

In view of Eg. (4.11), the detection criterion D(T) is
known for T large as soon 4s we KNow

0) - I "‘ . R
2 ntoF = 5, (7.1)
and
27t @' (0) (7.2)
Thege guantities may now bs expressed in terms of the charaec-

teristics of the filters and the statistics of tlie input noise and

modulating function.
From Eys. (5.11) and (5.12); and the assumption Eq. (6.5), it

follows that

P‘)'tm(o\) - P‘-’l (0\ = (7.3)

3ot $dy 6,6) KO KTG) Jha @lo) wF Lo By o)
fd.wz (“’D “2 (v%.) Hﬂ(l.n.);a-v)

+amt Sy 6,0) (du don Gl Gla) B o) 1 (w)
H, (m.w\ Ha¥ () K, (w40) K2 (,+w2)

vt Sy Ggls) S5 du de G1) G) 1 (0) Ha®(r-v)
() B ey Ko lova) K6 (0 +0,)

+ Y m? _(olv ua,\v; f alw. aw, G w.) é“’:) fh (w \+) Hz (" *"'

H (L)Z) nz (wz\ K‘ (0) -4-{4)’_*’11) KQ. (w. +wz+\))

+1m> fav Geb) ff do, dv, 6 la) Gl Hlor) H¥0)
K (“’z\ R R«h;fv; K, I.J,i-u,)_iw\ x}_ (u,,+u,,_+~-\
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It is immediately seen from Eq. (5. 11) that, under the assump-

tion Eq. (6.5), the firs+ term in the expression Eq. (6.6) for

Rw\-t’) is aqual to P 0). Therefore R' (T) is given by tne

other terms of Eq. (6.6). By idtegratinv these terms with

=

{ .r du | V:/u)‘l I (Wl fdw Glw) G(w,u)///,@)l”//-/, (w,-};u)/z’
[dos €lwd) 6wpan) ha()]* My (240]*

e [du (K & W (4o Gla) Glasn) Bio) B 6)
Bt Hy (wrid 3

;.»

+ Jdn 16 Wi Ji I I (] * ]
I dw K W) K.¥(w) 6 (wen) K /W*,w f2 ¥wen) |

+ de& | &(wl* f_H.*/A) Hz(;u)f
L)de K (0 KTfw) & (w+i) H lwin) Ha (k-’i',k);

reqpect tox from -& to &£ , we obtain the followling express-

(7.4)

+ fd;s K //*) K (u) [ dwi dex Glwy) 6 (w; e Gloy) Gluo,n)
!Hﬁ \/“’.’).' .‘Lf‘ ’drf'l-x) H (w""o“) //fz (wz)/ HI /wznu) ”2_ {w;'l‘,&)

K (w4, +p)  KF (wy)+os +4)
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From the above results, we may immediately obtain tins
detection criterion D(T) for the system of Flg. 2 by setting
Hy(w) = Hq (W ) = H(w) and k(@) =X, (W) = K(w). D(T) for
T large is still given by Eq. (4.11), but now the terms on the

right hand side of . (4,11) may be expressed as follows:

P'u'n(o" (J ID) = (7.5)
—~n Jar &0) JKOI* [fao 66) #76) K[

w {4y G.’) [ duy disy G G(0n) H () Hlw+Y)
L.'*(w,.\ H {:=) JK(w,+w) 1™
'%’-”t S&N 6 (V) ”dw. cl”z_ {wz) G/w,) /#(wut

/m.,. e 1K (o s +93 ]2 |

FE o [dy 6g0) [Tdo, dis Glu) Gl) K Hlo )

V2

”(‘02-) H*{wz *7) /K("";"")Z*'Vu

25 GLL) = Hu (7.6
ig_ Fde 1KWI® { Jde 60 & lwen) 1RGN - H e} ]
2 (du |6l R4 T Sdo K™ Gl | W F
+ Ay iK' [ dwi dw. é,(’..-,) G G (0, +u) G (wy,+/)

VR

[ ())? R 2)|® Bl 2 Mt + % [Klowin+#)™
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system of Fig. 2. For mathematical
that, up to vhase factors; %the filte
and K(@© ) are given by Gaussian functions, as follows:

= 96 w
8. APPLICATION TO THE CASE OF GAUSSIAN FILTERS

To illustrate these results, Lzt us compute D(T) for the
convenience, let us assume
T

transfer functions H{W )

PR ISt o BN WY TRl o "
Wiz ol z 77 ) 0 Fapl 2 \T g ) (8.1)

Kl L35 T o255 6

While not physically reaiizable, Gaussian shapped fiiters are
often good approximations, for mathematical purposes, of actual

L/

filters. Under this assumption, tie svalus

in Bgs. (7.5) and (7.6) is much simpler than it would be otherwise,
for we may use the following useful formula for the product of twc

L S
ticn of tha 1integrals

ad

[ 2

Gangsian factors:

- RY! A v S \*
wp | -5 (*"—)g-;—‘) } er.“ Z ( & 2) J (8.3)
: - Si LR !~f‘ - S !1
= ¥ [" (w,f ) ] %f = oi:‘-‘,. ,‘.;2 ]
where
0 <2, _Q_ e 2 ajlrz (8.4)
= Hg":’i 6':12 | Sl 6?1*??
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It is easy to verify Eq. (8.3) by expanding both sides. From
Eq. (8.3) it follows that

i wpls(22%7] o (2 (222 (0.5

— LT . 2 [—-L (*0-." =2
_%[Wz*‘-‘fiz] Nz ama J

For the signal power spectrum Ga(&>), we willi assume a
(-]
Gaussian function centered at roughly the same point as is K(w).

T S S B L (8.6)
it Ao [
(oL [wr e\ }
4+ ﬂf;‘f\_'%.\"}% )]

There is no difficuity, however, in treating any other form of sig-
nal spsctruam.

The noise power spectrum G(c ! is assumed to be flat and iden-

We assume thet a2ll cross-product terms may be ignored when
these Gaussian functions are multiplied. We then have by Eq. {8.3)

that

H{w) H(wp) = 2% {"5’ i%{'] (8.7)

fal 5 "‘
‘ 3 uf2 )" ] [..'- (w +Jl,;.—.t.».lz)" I
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We also sssume that

a:—“l N =1 ) wf[‘(%ﬂ)z}ii'
& a

”~
(o 9]
L

[0 0]
LN

There 41s now no difficulty in evaluating Egs. (7.5) and (7.6€).
We obtain the following aprroximate expressions:

Pan L0) = P, (0)

I

(8.9)

. Cr, G 21 3 %]

Iy PR L - R I B Y e S C o I S B

‘-{'n”mi"'d}'* Ll—lrk /I 3 iz o )

' F)
2r G (0) =
l,—\.? Y 2 § ") T« 1 (8.10)
wlE) gt g (e EeD ] -

As s measure of the ratic of the bandwidth of the spectrum of
the modulating function to the bmﬂ‘""‘*'h of the power transfer
runctions {H(w )| 2 and |K(a))| of the filters H and K, define,

respectively,
- -
— 2. R = & 2
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Then, by means of Eq. (4.11), we have approximately,
—— 2 / cunm A
L ) 1 (8.12)
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9. EXTENSION TO THE INCLUSION OF BACKGRCUND NOISE

It is of some interest to conslder the problem of detecting
the amplitude moduilated noclse in the presence of background noise-

We let z{t) denote a staticnary Gaussian random time function,
with autocorrelation R, (v ) and power spectrum ¢ _(«). We assume
z{t) to be sfatistinallv independent of y(t) and g(t;. Let

fyl(t) = Y(t) + z2(t). (9.1)

Then yl(t) is a stationary Gaussian randcem time function with
autocorrelation

) (¥ = R (%) Ryl

N\
o L0T) (9.2)

W) =6, (W) G, (). (9.3)

If the input of the system of Fig. 1 is yl(t\- then tne cross-
correlation of the outputs before the multipiier (denoted by ﬂn+b0r ))
and the autocorreiation of the output after the multiplier, continue
tc be given by Egs. (5.11) and (6.6), respectively, with the proviso
that instead of CG(w) we read G,(@).

Next, let us consider the case where the input to the system of
Fig. 1 is

u®) = y(8) [Hme®)] + 20, (9.4)

and let ug compute tlie cross-correlation cf the outpute before the

R
mus v

;
piier, which we denote by fmn*-b(’:)' In the notation cf g
Sec. 5,
(e .

iomn-r B! =] <F1 [ )] > PAY (9.5) &
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Using the methods of Sec. 5, 1t may be shown that
4 Pmn+b(“)" 4 {’vu-b‘ ) (5.
+ K‘(os K, (0) m { §ae a.lw;)lh.-wd\ ja uswjawzem e sl ®
+ { w, Y (0 0012 fdy 6y() futv, Gy ) ) Do, ™

¥ jc{“‘- 6y (w) | W (w)? jdv 6 i) )Aw 6%(&)'" (02+4
+ ( dw, 6, Uﬂg) i, (uq)n ‘Lv hg{v) rd‘m 6u (a.,h){,(pa-v)i }

3\
/

Cin

+ Zm? Jé-v C () et K6Y K0 [du &g ) H” (w) H (1w, +)
Hw, G (UQ sz (“)2.) é"ak“-z“’\
+ ;Mz \d‘v G!f\‘\’ Lf"&“ du, C‘{l""\ le\ atr;w.rw;\ L! ”“\ H X{m+v'
i-l.wz) Ho* (wae¥) K (wewn) KX (v
f"" ("‘3(1) ((dw\ d\') Gu(h’\ c‘b(“)\) C“‘(w.*%"" H (W r‘V) iz & 2.’
M (=) Ha® lws) K Gen s K™ (o +ws)

5 l-\h ow?‘ ((Aw dw, G, W;) (\!“’2) e""” ) rL(W\Hz (M)
HI(%’*‘V) Hz (“)2_+yl k (w +w;_+’v\) I(;_ ( w,_+-~3

] qa.." ’ l’
3

i:l-.

\
| P

+ Lm* Jd" 6((7\) etvr (\dw‘ v, (:-,!(w‘) é‘u(“’ ‘)e.z(w 03 H.\w-w\ Ha (‘0\
H {w,) Ha (wary) K (w Ho,_w\ K* (M*’Wz‘ﬂ’)
1w fdy ég(v) e*® (fdw, doy b (w) &) et ) 1 () Hatle)
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The reader should cbserve that the difference
i )'1 - =
Y (,‘_: l_’ l N :
[P’mub (v) /Qn.+b I . P?m'z(hc) ()ﬂ (T)J

is given, up Lo a constant, by ihe very last
under the assumption of Eq. (6.5). Thus the
out of the system due to the presence of the
is increased
fluctuation term in the denominator of
greatly increased by the background noise.

However, the

?
tectich critoriond

by this term when backgrceund ncise 1s press
the detection

(9.7)

term of Eq. (9.6).
average mean level
mcdulating function
.

Ccnse-

as one naturally expects, the detectability (as given by
decreases as the packground rnoise in-
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10. CONCLUSIONS

In the forsgecing., we have developed formulae which enable us
to study the behavior, and the optimum deslgn, of the detection
1. We have made three calculations which may be
of general interest. We have (1) introduced, and uerived various
limiting forms for the detection criterisa; {2) computed the cross-
correlation of ©the cutputs entering the multiplier for two kinds
of input, stationary Gaussian nolse and ampiitude modulated nocise;
and (3) computed the autocorrelation ¢f the output of the multiplier
when the input is noise. From the correlation function, the corres-
ponding power spectrum can be obtained by means of the Wiener-

tical techiniques used here may bve of use in many
han the one we have expiicitly considered. 1In the
) ) sic rule was played by Eq. (A7) of
the Appendix, which gives an exrlicit expansion of the higher order

statistics of a Gaussian random process in terms of its second

4 - o
33; a ba

order statlistics. By using this expansicn, we were able to avoid

using tha Yourler representaticn of a Gaussian random process lused
iy 2. 3 - .

by many authors™? “7 2. It appears to us that, as long as only

linear and quadratic devices are considered, the use of the Fourier
representation renders many computations unnecessarily cumbersome,
and may not aiways readily yield the correct result in complicated
situations in which delta functicns are involved in the power
spectra. It has often been cbserved that the correlation function
1s generally better behaved than the power spectrum and consequently
the m&thematical analysis may scmelinies bte simpler if one first
computes the correlation function, instead of the power spectra.

The computation of the correlation functicn can in turn be facili-

tated by use of formula (A7).

W

LR S

L ENT 4 B

u.-ﬂ\lfu.smvf 3 £ = o s

T s R A COR AT T RS BRI R TR A TS

e il S s




- 234

APPENDIX: THE MATHEMATICS OF NOISE

In this appendix, we sumnarize the main notions in regard to
random time functions, and define what is mathematically meant by

) be a function of time t defined, for the sake of

for —gp0 2t < . If v(t) contains, in addition to t,
random parameters, so that at each point t, y(t) does not have a
definite value but only an ensemble of possible values which 1t
assumes in acccrdance with some given probability distribution,
then y(t) ie sald to b¢ a random time function. Then the ensemble
average, denoted by <> s 1s an average taken with respect to
these random parameters. We let

n, () = <{y+» tAL)
"L’L E ) (cé( ,
D (e t)= < »
i 3 L ‘{:Ajta ‘ = ™~ u: (t') tJi(At:'--) a) (AZ)
' N~ T A& 0 “

denote the ocne- and two-point ensemble averages of y(t); uy(t) is
called the mean-value function, and P (tl, t2) is called the
covariance function of y(t). f

A random time function for which the ensembie sverage
< y(t) y{t +x )> has a value that is independent of t, and de-
pends oaly on & ¢ 1s called statlionary.

[

P S i T r———

The autocorrelation Ry(r) s a random time function is de-
fined (for —e@<¥ L ) by

R () = Lim i JT <yl y B+ dt
9 T Teoe LV J.v 33 >
- éfr\,‘_;(e_,%w\:Lm.

where the subscript TAv 1s used to denote a time average, defined

as in Eq. AS.
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Clearly, for a stationary functiocn

Ry(~) = Py(t, t+r ) (A4)

The power spectrum density function G_(w ) is related to
R L) by means of a Fourier transformation (#iener-Khintchine
theorem'v
: »®
\‘ __._ {‘ *—ui\n/ ﬂ [ £ N
G, (w)= e K, tv) dz (A5)
¥ T Joa 4 )
2 Oo
= {0 —
= == wo v Rgle) de
T d
L &4
: o0
: J {Tw _
Ro(e) == %™ G () do 46)
] A 3 g o
P a
lra
= \ o1 Yuw Gj (’w) dw
J\

By noise is geuerally meant a stationary ra.dom time function,

The imporitant mathematical
probability

y{t), whose distribution is Gauzzian.
property of such a random function is that its complete

distribution, and all possible mouments, are fully determined once
we kXnow the mean value function, lLJ’t /s and the autocorrelation

v
function, R_{¥ ). The mean valus f{unctiocn, M (t), is often assumed

to be idenulcally Zero. all odd order moments
vanish, and the even order mcments may be expressed in terms of
the second order goments by means of the following useful formula.

For such noilce,

Let n be an even 1nteger, and let T4 ,......,t be points of time,
some of which may coiricide. Then

/7 L Y, _ ) N A T

Cule) - ulby = 27yt g ) - Cylte, )y e

where the sum is taken over all poscsible ways of dividing the n points
into n/2 comiicaticrns of 2 pairs. The number of terms in the summa-
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tion is equal to 1°3°°*°(n-3) (n-1). Thus, for n< 4 there are
three terms in the sum, and for n = 8 there are 105 termc.

It is interesting to observe that Eq. (A7) characterizes
noise. A zero mean stationary random time function is Gaussian
if, and only if, all its odd moments are zerc, and its even
moments satisfy Eg. (A7)4.

By random noise 1s generally meant noise with a power spectrum
that is constant up to quite large frequencies. The covariance

function of random noise is thus, more or less, a 5 function.
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